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Abstract
We propose a construction of unique and definite metric, η+, time-reversal
operator, T, and an inner-product of eigenstates such that the pseudo-Hermitian
matrix Hamiltonians are C-, PT- and CPT-invariant and PT-norm (CPT-norm)
is indefinite (definite). Here, P and C denote the generalized parity and charge-
conjugation symmetries, respectively. The limitations of the other current
approaches are also indicated.

PACS numbers: 03.65.Ge, 03.65.−w, 03.65.Ca, 03.65.Ta, 11.30.Tr, 11.30.Qe

1. Introduction

The remarkable developments [1–7] of real discrete spectrum of complex PT (P: parity and T:
time-reversal) symmetric Hamiltonians have eventually culminated in the revival [10–15] of
the concept of pseudo-Hermiticity of a Hamiltonian. The concept of pseudo-Hermiticity was
developed in 1950s–60s [9] following a definition of distorted inner-product: 〈�|η�〉 [8], η

is called a metric. A Hamiltonian is called pseudo-Hermitian if

ηHη−1 = H †. (1)

Pseudo-Hermiticity is a more general condition than that of PT-symmetry on a Hamiltonian
for possessing real eigenvalues [11]. Nevertheless, PT-symmetry is more important in making
contact with physical situations and systems. This motivates one to recast pseudo-Hermiticity
of a Hamiltonian in terms of PT-symmetry, in some generalized sense.

The most interesting feature of the eigenstates of such Hamiltonians is the indefiniteness
[4–9] (positivity–negativity) of the norm which is a consequence of the η-inner-product [9]

〈�m|η�n〉 = εnδm,n (2)

where εn (=±1) is indefinite (positive–negative). Recall that the usual norm, 〈�n|�n〉,
in Hermitian quantum mechanics is positive definite as it represents quantum mechanical
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probability. Therefore, the construction of a definite metric η+ so that the norm (2) becomes
positive is of fundamental importance. This question is addressed in the present work.

Interestingly, the indefiniteness of the PT-norm has given rise to a new direction of
investigations. It has been proposed [16] that the indefiniteness of the PT-norm indicates the
presence of a hidden symmetry called C which mimics the charge-conjugation symmetry (C)

[17] of the relativistic Dirac field. It has been claimed that the CPT-norm will be positive
definite.

The next related development [18] caters to the construction of generalized involutary
operators C, P, T from the bi-orthonormal [9] basis (�,�) of the pseudo-Hermitian
Hamiltonian with real eigenvalues. In doing so, the well-developed machinery [9–14] of
pseudo-Hermiticity has been utilized. This development, however, does not dwell upon the
negativity of the PT-norm and invoking C for the positive definiteness of the CPT-norm. In
this approach, the search for various symmetries of H and their identification as C, PT or CPT
has been proposed. Despite obtaining a curiously different definition of T other than the simple
K0 (complex-conjugation: K0(AB +C) = A∗B∗ +C∗) [16], no resolution seems to have been
made [18]. Also, despite this incompatibility a similar definition of the CPT-inner-product
[16] has been adopted in [18].

The real potentials have real spectrum irrespective of their parity; they may or may not be
PT-symmetric. The interesting unification may be brought wherein the Hamiltonians with real
spectrum could be called PT-symmetric and CPT-symmetric above all. This has recently been
achieved by defining the generalized parity [19] and the generalized time-reversal operator [20]
and incorporating the fact that when the interaction is Hermitian, C = P [16]. All Hermitian
Hamiltonians have been proved to be P-, T-, PT-, CPT-invariant wherein the CPT-norm
(PT-norm) is definite (indefinite) [20].

In the present work, we propose further extension of these [19, 20] definitions of P and T
so as to bring consistency in proposing the C-, PT- and CPT-invariance of a pseudo-Hermitian
Hamiltonian (real eigenvalues), the definiteness of CPT-norm and the indefiniteness of
PT-norm. In our study, we prefer the use of matrix notation and matrix models of Hamiltonians.
Recall that in the case of Hermiticity, for the usual stationary and time-independent states the
three modifications �(x),�∗(x) and �†(x) usually coincide. However, in matrix notation,
we have four distinct modifications of a state. These are �,�∗ (complex-conjugate),� ′

(transpose) and �† (transpose and complex-conjugate). This makes the matrix notation more
general, unambiguous and unmistakable.

2. Pseudo-Hermitian matrices: a unique and definite metric

Let us note that the non-Hermitian complex matrix, H, given below admits real eigenvalues
E0,1 = a ± √

bc, when bc > 0. We find that there exist (at least) four metrics ηi under which
H is pseudo-Hermitian

H =
[
a −ib
ic a

]
η1 =

[
0 −i
i 0

]
η2 =

[
r2 −s

s 1

]
(3)

η3 =
[
r 0
0 1/r

]
η4 =

[
0 −1
1 0

]
.

Here r = √
c/b and s is, in general, an arbitrary complex number, indicating that a metric

need not necessarily be Hermitian. These η1 (Pauli’s σx) and η2,3,4 have, in fact, been found
by crude algebraic manipulations demonstrating that metric η is non-unique as noted earlier
[10]. Furthermore, if η1 and η2 are found then infinitely many metrics can be constructed as
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η = (c1η1 +c2η2) provided η is invertible. On the one hand, the four metrics given above (3) do
provide several operators Fi,j = ηiη

−1
j , i �= j = 1, 4, which by commuting with H bring out

its hidden symmetries [10]. In fact, the currently discussed C, PT and CPT symmetries shall
be seen connected to Fi,j in the examples that follow. On the other hand, the non-uniqueness
of η, apart from its indefiniteness, may be undesirable as the metric determines the expectation
values of various operators as 〈�|Aη|�〉. We state and prove the following theorem which
helps us in fixing a unique and definite metric. This could be seen as a method for finding at
least one metric under which a given matrix is pseudo-Hermitian.

Theorem 1. If a pseudo-Hermitian n × n matrix H admits real eigenvalues (E1, E2, . . . , En)

and D is its diagonalizing matrix, then H is η-pseudo-Hermitian, where η = (DD†)−1. The
converse of this also holds.

Proof. Let us define a real diagonal matrix E = diag[E1, E2, E3, . . . , En] such that
E = E∗ = E†:

D−1HD = E ⇒ D−1η−1ηHη−1ηD = E ⇒ (D−1η−1H †ηD)† = E†

(4)
⇒ D†η†Hη−1†D−1† = E .

Upon comparing the first and the last parts of the above equation, we get D†η† = D−1

and η−1†D−1† = D which are mutually consistent justifying pseudo-Hermiticity when the
eigenvalues of a complex matrix are real and implying η = (DD†)−1. �

In general, D will be pseudo-unitary: D† = δD−1δ−1 [9, 15] with respect to some metric
δ which may not be the same as η. When H is Hermitian, D will be unitary and we get η = I

as a special case.
One interesting remark is in order here: it is often not realized [8–15] that pseudo-

Hermiticity does not provide a direct and explicit proof for the absolute or conditional existence
of real eigenvalues. Nevertheless, it is found [8–15] to support real eigenvalues indirectly as
also seen here and as follows below in the proof of the converse of the present theorem.

Proof (Converse). Let

D−1HD = E and (DD†)−1H(DD†) = H † (5a)

⇒ (D†)−1(D−1HD)D† = H † ⇒ (D†)−1ED† = H †

⇒ DE†D−1 = H ⇒ E† = D−1HD. (5b)

The first part of (5a) and the last part of (5b) imply nothing but the reality of eigenvalues. �

Similarly, when all the eigenvalues are complex-conjugate pairs and D is the diagonalizing
matrix arranged such that the eigenvectors corresponding to the complex-conjugate pairs
of eigenvalues remain together, then it can be proved that η̄ = (DSD†)−1, where S is
Pauli’s σx , when H is 2 × 2 otherwise when H is 2n × 2n, S is a block-diagonal matrix:
S = diag[σx, σx, σx, . . . , σx]. We denote and state thus the obtained metric as

η+ = (DD†)−1 (6)

to actually see that the indefinite norm (2)

Nη+ = �†η+� = �†(DD†)−1� = �†D†−1
D−1� = (D−1�)†(D−1�) = χ †χ > 0 (7)

is now positive definite. Finding eigenvalues, eigenvectors and diagonalizing matrix is a
standard exercise. In that the theorem stated and proved above is indeed an attractive proposal
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to find the metric for a given complex non-Hermitian matrix admitting real eigenvalues under
which it is pseudo-Hermitian. However, by multiplying the columns (rows) by arbitrary
constants we can get many diagonalizing matrices say Dj and this would give rise to as many
metrics, say ηj , under which H will be pseudo-Hermitian. For the sake of uniqueness, one
may only use η-normalized (2) eigenvectors to construct D. Earlier, it has been proved that
if a pseudo-Hermitian Hamiltonian, H, has real eigenvalues then there exists an operator O
such that H is pseudo-Hermitian under (OO†) [10] and (OO†)−1 [12]. Another form for η+

in terms of the eigenvectors has also been proposed [18].

3. Construction of C, P, T and proposal of an inner-product

When pseudo-Hermitian Hamiltonian (1) has real eigenvalues, we have [9]

H�n = En� H †�n = En�n �n = η�n. (8)

(�n,�n) are called bi-orthonormal basis. We have also witnessed in the above example (3)
that several metrics could be obtained under which a given H is pseudo-Hermitian. Let us stress
that this interesting practical experience remains elusive in several formal definitions. Let us
examine the properties of the metrics obtained in (3). The metric η1 is involutary (η2 = 1).
The metrics η1, η3, η4 (3) are Hermitian, unitary and proper (det η = 1). The metrics η3, η4

are real symmetric. The metric η2 very importantly is non-Hermitian in general. The metrics
η1, η4 are (constant) disentangled with the elements of H and we call them secular [15]. It will
be very interesting to investigate whether or not one can always find an involutary and secular
metric for an arbitrary pseudo-Hermitian matrix. The interesting exposition [10] that most of
the known PT-symmetric Hamiltonians are actually P-pseudo-Hermitian is very valuable in
order to connect pseudo-Hermiticity with P and T and hence to possible physical situations
[15]. Once the involutary metric is found, it will be fixed for the definition of orthonormality
(2) and we will take it to represent the generalized P. This ad hoc strategy also seems to have
been adopted in [16]. Therefore, the question of a definition to construct P again, from the
bi-orthonormal basis (�,�), either does not arise or will yield P = η, eventually.

Here, one very important remark is in order: in the recent works on pseudo-Hermiticity,
the indefiniteness of the η-norm (or orthonormality) has not been realized and this has given
rise to an assumption that somehow �

†
n�n is positive definite (e.g., equations (11) and (12)

in [10], equations (5) and (6) in [12], equation (7) in [13]). Consequently, representations of
1 (the completeness) in terms of (�,�), for instance, for the two-level matrix Hamiltonian,
have been given as

(
�0�

†
0 + �1�

†
1

)
. Though known earlier [4–9], however, the indefiniteness

of the norm is centrally consequent to the novel identification of charge-conjugation symmetry
by Bender et al [16].

Thus having fixed η, we find η-normalized (2) eigenvectors �n for H. These normalized
eigenvectors are used to construct the diagonalizing matrix D and η+ (6) which are unique
only under a fixed η. We obtain another basis {ϒn} as

ϒn = η+�n (9)

which, by construction (see (7)), is such that

�†
mϒn = δm,n. (10)

We propose to construct P as

P =
N∑

n=0

(−1)n�n�
†
n (11)
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such that Pϒn = (−1)n�n, implying that neither of �n,ϒn are the eigenstates of parity as it
should be. We define the anti-linear time-reversal operator T as

T =
(

N∑
n=0

ϒnϒ
′
n

)
K0 (12)

such that T �n = ϒn and we further have

PT =
(

N∑
n=0

(−1)n�nϒ
′
n

)
K0 (13)

such that PT �n = (−1)n�n. We adopt the definition of C as proposed in [18]

C =
N∑

n=0

(−1)n�nϒ
†
n where

N∑
n=0

�nϒ
†
n = 1 (14)

such that C�n = (−1)n�n. Next using (13) and (14) the symmetry operator CPT takes the
form

CPT =
(

N∑
n=0

�nϒ
′
n

)
K0 (15)

such that CPT�n = �n The following involutions,

(CPT)2 = (PT)2 = C2 = 1 (16)

always hold. However, we get

T 2 = P 2 iff (−1)m+n�†
m�n = ϒ †

mϒn. (17)

When the Hamiltonian is Hermitian, P and T have been proved to be involutary [20]. However,
for a pseudo-Hermitian Hamiltonian this becomes conditional. In equation (87) of [18], the
above condition is suggested to ensure that P and T are involutary. Let us remark that this
condition only ensures that P 2 = T 2. Further, since we choose P to be involutary, so will T
be. We find the following commutation relations,

[H,C] = [H,PT ] = [H, CPT] = 0 and [H,P ] �= 0 �= [H, T ] (18)

displaying the invariance and non-invariance of the Hamiltonian. We now define an X-inner-
product as

〈·|·〉 = (X�m)†ϒn = (X�m)†η+�n = εnδm,n. (19)

and consequently, the X-norm as

NX,n = (X�n)
†ϒn = (X�n)

†η+�n. (20)

Here X represents the operators corresponding to discrete symmetries: C, PT and CPT as
constructed above, such that [H,X] = 0. Since X�n = εn�, εn is real, the X-inner-product
in view of (7) will be real definite.

The definition of T and the inner-product in [16, equations (5), (12) and (22)] in our
notation read

T = K0 〈·|·〉 = (X�m)′�n (21)

which is not real definite in general, noting the fact that �n are eigenvectors over a complex
field (the elements of these vectors are complex).
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The definition of T and the inner-product proposed in [18, equations (78) and (75)] would
read

T =
(∑

n=0

(−1)nϒnϒ
′
n

)
K0 〈·|·〉 = (Xϒm)′�n. (22)

Once again the inner-product is not real definite. We have earlier [20] proved and illustrated
that the definition of the inner-product (21) [16] does not let the energy eigenstates of the
Hermitian H be orthogonal. We would like to claim that our definition of the X-inner-product
proposed here is the most general and consistent so far [3–9, 16, 18–20], for the PT-symmetric
or pseudo-Hermitian Hamiltonians.

Let us remark that the inner-product (21) works in [16] since the Hamiltonian considered
there is complex symmetric (H ′ = H) which is adjudged to be pseudo-Hermitian under
η = σx, here. Thus the eigenvectors are orthogonal as ψ ′

0ψ1 = 0, in addition to their
η-orthogonality: ψ

†
0ηψ1 = 0. For the case when

H =
[
a − c ib

ib a + c

]
η =

[
1 0
0 −1

]
= P ψ0 =

[
1

−ir

]
(23)

ψ1 =
[

1
−i/r

]
r = a ± √

c2 − b2

b

the prescription of [16] would again work. It will, however, fail for the models in the
illustrations, I1 and I2, given below.

4. Illustrations

In the definitions for the construction of P, T, C, though general, certain features can still not
be proved. For instance whether C and P will always not commute and whether P and T will
always commute. Given that P for a Hamiltonian is non-involutary will we get an involutary
T ? Can we get C to be secular? In this regard, simple doable examples are desirable. In the
following we present two illustrations to throw some more light on the unanswered questions
stated here.

Without loss of generality, we take 2 × 2 matrix Hamiltonians [15] and construct P, T, C
as per equations (11), (12) and (14) as

P = �0�
†
0 − �1�

†
1 T = (ϒ0ϒ

′
0 + ϒ1ϒ

′
1)K0 C = �0ϒ

†
0 − �1ϒ

†
1 (24)

for short. In illustration I1, we take up the same Hamiltonian as given in (3). Here the
fundamental metric (P) is involutary. In illustration I2, it is kept non-involutary.

I1. We take the pseudo-Hermitian Hamiltonian, H, and the fundamental metric, η (=η1),
from (3). The η-normalized eigenvectors are

�0 =
√

r

2

[−i/r

1

]
�1 =

√
r

2

[
1/r

−i

]
. (25)

One can readily check that �
†
0η�1 = 0, but � ′

0�1 = −i 1 + r2

2r
�= 0 for the approach [16]

to work here. Following section 4 , we obtain P, T and η+ as

P =
[

0 −i
i 0

]
T =

[
0 −i
−i 0

]
K0 η+ =

[
r 0
0 1/r

]
(26)
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where r is essentially real which is unlike the unrestricted r in (3). Note that P turns out
to be the same as η1—the chosen fundamental metric. The symmetry operators C, PT
and CPT are

C =
[

0 −i/r

ir 0

]
PT =

[−1 0
0 1

]
K0 CPT =

[
0 −i/r

−ir 0

]
K0. (27)

One can readily check that the orthogonality conditions arising from (21) and (22) do not
work here, e.g. (CPT�0)

′�1 �= 0 �= (PT �0)
′�1. However, the proposed orthogonality

arising from (20) works. The symmetry C could be checked to be identical to η1η
−1
3 (see

(3)), demonstrating how two distinct metrics combine to yield a hidden symmetry of the
Hamiltonian. In addition to the general results stated above, we get (CP )−1 = PC = η+;
in actual CPT -invariance C,P do commute [17]. We also confirm the commutation of
P and T and the involutions: T 2 = P 2 = 1 = C2. Here P and T are secular whereas
C turns out to depend on the elements of H. Similar experience can be had by studying
the model of [16] and of (23). Interestingly, the fundamental metrics in these cases are
Pauli’s matrices which are involutary, Hermitian, unitary, proper and also secular.

I2. In the following, let us now take an example where the fundamental metric is only
Hermitian and secular as it does not affect the eigenvalues: E0,1 = 1

2

[
(a + b) ±√

(a − b)2 + 4c2
]
. We introduce θ = 1

2 tan−1 2c
a−b

.

H =
[

a −ic/x
icx b

]
η =

[
x 0
0 1/x

]
(28)

�0 = √
x

[
cos θ/x

i sin θ

]
�1 = 1√

x

[
i sin θ

x cos θ

]
.

Check that the states are only η-orthogonal and we have � ′
0�1 = i sin 2θ(1 + x2)/(2x) �= 0

as in I1, indicating once again the failure of the inner-products (21) and (22). We construct
P, T, C as

P =
[ cos 2θ

x
−i sin 2θ

i sin 2θ −x cos 2θ

]
T =

[
x cos 2θ i sin 2θ

i sin 2θ cos 2θ
x

]
K0

(29)

C =
[

cos 2θ − i sin 2θ
x

ix sin 2θ −cos 2θ

]

and η is returned as η+. Very interestingly, P is different from the fundamental metric
η. Since this fundamental metric is definite giving �

†
nη�n = +1, the construction of η+

as per (6) yields it back. Unlike other examples here we have T 2 �= P 2 �= 1, whereas
the results (16) are met here. We find that P and T commute; C and P do not commute.
We get PC �= (CP )−1 = η+ = η. When x = 1, the scenario for Hermiticity can be
observed. In this model all C, P and T are non-secular as they depend on the elements of
the Hamiltonian.

5. Conclusions

The theorem stated and proved in section 3 adds an important result in matrix algebra [9]
for constructing a metric(s) η+ = (DD†)−1 (6) where D is the diagonalizing matrix for the
pseudo-Hermitian matrix which has real eigenvalues. The proven positive definiteness (7) of
this metric is of utility while constructing the generalized P, T, C and an inner-product for a
matrix Hamiltonian which possesses a real spectrum.
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If X is a discrete symmetry operator for the Hamiltonian H, i.e. [X,H ] = 0, then the
proposed definition of the inner-product, 〈·|·〉, of the eigenstates of H as 〈X�|η+�〉 (19) or
even 〈X�|η�〉 is the most general definition proposed so far when the Hamiltonians are
PT-symmetric or η-pseudo-Hermitian.

Our construction of operators C, P and T for pseudo-Hermitian Hamiltonians (with real
spectrum) is essentially compatible with the indefiniteness of the PT-norm and the definiteness
of the CPT-norm. It could now be asserted that Hamiltonians with real eigenvalues are CPT-
invariant and the CPT-norm is positive definite. The models considered here are matrix
Hamiltonians, however, other types of Hamiltonians are still desired to be included.

One point that requires emphasis is: in pseudo-Hermiticity, we are able to construct only
three distinct involutary operators, which we have designated as P, T and C analogous to
the conventional P, T and C [17]. Admittedly, the only properties possessed by P, T and C
are their involutions (16), various commutations and non-commutations (18), and the inner-
product (19), to strike their correspondence with the actual P, T and C of the Hermitian field
theory [17]. Much deeper connections and arguments would be required to make claims in
the style of the conventional CPT -invariance. Our matrix Hamiltonians could be taken as toy
models of a future pseudo-Hermitian field theory.
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